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hSTRACT 

The Legendre polynomial (“spherical harmonic”) representation of the transport 
equation in plane and spherical symmetry is written in conservation form. Difference 
methods for the resultant equations are constructed and discussed. 

I. INTRODUCTION 

Solution of the time-dependent transport equation is of considerable interest 
in connection with problems in astrophysics and neutronics [l, 21. Techniques for 
numerical integration of the equation have been a subject of investigation for the 
last two decades; this investigation was greatly aided by the development of large 
digital computers. 

The intent of this paper is to investigate some of the properties of the Legendre 
polynomial (“spherical harmonic”) representation of the one-dimensional transport 
equation with plane or spherical symmetry, and to difference the equations obtained. 

II. THE LEGEND= POLYNOMIAL REPRESENTATION 

For simplicity we shall consider here only the special case of the frequency- 
independent radiative transport equation. The equation is: 

[C-l ; + /& ; + /+I(1 - /AZ) + + a@, t,] 101, r, 0 = %4 r, t). (1) 

Here I&, r, t) is the specific intensity at the angle co+ p at the spatial coordinate 
r and time l, C is the speed of light, o(r, t) is the total cross section, and /3 = 0 

1 Work performed under the auspices of the U.S. Atomic Energy Commission. 
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for plane symmetry while /? = 1 for spherical symmetry. The source term S(p, r, t) 
will not be explicitly specified; it is assumed to contain all effective sources including 
those due to scattering, etc. In the following discussion, derivatives with respect 
to P and t will often be denoted by subscripts. 

Numerical integration techniques for Eq. (1) usually take the form of “Monte 
Carlo” calculations [3], discrete ordinate methods [4], or “moments” methods. 
The fundamentals of these approaches are fairly well known; they are discussed 
and compared by Campbell [5]. 

We shall deal here with the Legendre polynomial representation of Eq. (l), 
which belongs to the class of “moments” methods [6]. This representation can 
be obtained by multiplying Eq. (1) by 27rC1P&), where Pr(p) is the Legendre 
polynomial of order Z, and integrating over the range - 1 < p < 1, using the 
relations: 

The result is an infinite set of coupled partial differential equations. In the usual 
spherical harmonics method, the sequence of equations is terminated by setting 
one of the Legendre polynomial integrals of I&, r, t) equal to zero. Here, however, 
we shall use a much more general terminal equation which arises from consideration 
of the transport equation in three dimensions [7]. This more general analysis leads 
uniquely to the choice of the Legendre polynomials as a basis for expansion of 
Eq. (I), and the truncated system of equations obtained has the very desirable 
property that the maximal velocity of signal propagation is exactly the same as 
that of Eq. (1); i.e., C. 

If we define 

then the system of equations, including the terminal relation, is 

c-lP0.t + hr + 2Plp,l + q% = so, 

(3) 

(4) 

(5) 

C-lPw + 2/+ 1 -!I!2 [p z+I.~ + PC1 + 2) r%+J 

-I- & k0--1,~ - ,@ - 1) r-h-J + up2 = Sl ; I > 0, (6) 

C-1P2n-l.t + kJm-2,T - 2/3(n - 1) +f2,-,l + ~~~~~~~~~~~ = ~~~~~~~~~~ . (7) 



TRANSPORT EQUATION REPRESENTATION 199 

Here n may be any integer or half-integer greater ?than 4, although for most 
practical purposes n is taken to be integral. In the time-independent limit of Eq. (7) 
when n = 1, y1 is the reciprocal of the diffusion constant. In general we have 

4n - 1 
Y2n-1 = 241 + 012n--2) - 1 ’ 

where 012n--2 = a2,&r, t) is essentially the parameter introduced by Pomraning [8]. 
In cases where azn.Jr, t) is independent of I& r, t), it can be evaluated by the 

formula 

(9) 

where I(p, r, t) is an assumed approximation to the plane-symmetric intensity 
distribution. 

For example, in the asymptotic limit we have 

414 r, 0 Al(r9 t> A,@, t> 
-+--+ 1 -Kp 1+ Kp 

where K = K(r, t) is related to the constant D(r, t) of asymptotic diffusion theory 
by: D(r, t) = (1 - K/tanh-lK)/K2. Substitution of Eq. (10) into Eq. (9) gives 

s, 4 P2,Wl - K*/-W 
a2n-2(r’ t, + J; dp. Pz,-2(~)(l - K2/2)--1 

for the usual case where n is integral [8]. 

III. THE CONSERVATIVE REPRESENTATION 

There are clearly many ways of writing difference equations corresponding to 
Eqs. (5-7). We wish to write a difference scheme that will preserve the conservation 
properties of the differential equations. (“Conserved quantities” will be considered 
to be quantities which, except for explicit sources and sinks, are conserved when 
integrated over a bounded system.) 

For plane symmetry all the p1 are conserved, but for spherical symmetry and n 
integral, there are exactly as many essentially uniquely determined conserved 
linear combinations of the pz as there are equations. This is not true for n half- 
integral ; in general, the existing conservation conditions do not saturate the 
equations, nor are they unique. We shall accordingly restrict our investigation to 
the case of integral n. 
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Let: 
en-1 

EWZ) = c WZP, 
t-0 

(12) 

First we choose W,,-, = 0; I = 1, 2 ,..., n and arbitrarily W, = 1. Then for each 
of the values of the parameter m = 1,2,..., II we apply the recursion relation: 

Wrn 
(I + 1)(21+ 5) 

wz” [(I + 2)(2Z + 1) 
(I + 2) - 2m 

z+2 = (I + 1) + 2m ’ (13) 

to obtain a total of n conserved quantities: 

r2@‘E( Wzm). (14) 

Neglecting sources and sinks, the quantities E(Wzm) obey differential equations of 
the form: 

$ ,qw,y + r”fJm ; [r@“Frn] = 0, (15) 

where I;m is another linear combination of the pz . 
Next, we choose W,, = 0; I= 0, l,..., n - 1 and arbitrarily W,,,-, = 1. Then 

for each of the values of the parameter m = 0, -1, -2,..., -(n - 1) we apply 
the relations: 

(16) 

to obtain another II conserved quantities of the form (14) satisfying equations of 
the form (15). 

This prescription can be easily derived by forming linear combinations of 
Eqs. (5-7). If the coefficients of the linear combinations of the pz,: are Wz , we will 
obtain expressions of the form: 

C-l t E( W,) + ‘5’ LZ~[P~,~ + bz/3r1pz] = source and sink terms, 
z=o 

where az and b, are functions of the W’s. The Wz given in Eqs. (13), (16), and (17) 
are just those which make bl independent of 1. The algebraic details (which also 
lead automatically to the demonstration of uniqueness) are straightforward and 
will not be given here. Instead, we shall give an example of the method for the 
case n = 2. 
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Application of Eq. (13) yields 

m = 1: (W, 3 1; all other W, = 0}, 

m =2: {W,E 1; W, = -1; allother W, =O}. 

Next, application of Eqs. (16) and (17) gives 

m=@ (W,=l; WI=l; allother W,=O}, 

m = -1: {W, = 1; all other W, = O}. 

Then the appropriate conservative differential equations are: 

s 
C-~P~,~ + r-2p s Fhl + up0 = So , (18) 

C-Ypo - p2)t + i r4p $ [r*Yp, - #%)I + 4Po - PJ = so - s, 3 (19) 

c-YPl + P3h + ;; (PO + 56%) + 4Pl + Y3P3) = Sl + r3s3, (20) 

c-lp3.t + r2B & [r-“%21 + y393 = y3s3 . (21) 

IV. SPACE DIFFERENCE EQUATIONS 

Once our differential equations have been written in conservation form, we can 
difference them in such a way as to preserve their conservation properties. Let us 
consider a spatial mesh in which the P~~...~ ; I = 1,2,..., n are “centered” at the 
zone boundaries rlc and the pzl , 1 = 0, l,..., n - 1 are “centered” at the points 
lk+112 - i&k+1 + rk)e 

f21--1.k P21.k 

rk-l rk rk+1/2 rk+l lki2 

Then if E is centered at k + 3 , F will be centered at k, and we can integrate 
Eq. (15) as follows: 

Our difference equations will be reasonably well “centered” and the conservation 
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laws will be satisfied if we take E(r) + Elc+1,2 ; rk < r < rk+l . Then the difference 
equation is: 

; -%c+, 12 + (2/h + l)(rE$+l - r~@+l)-l(r~$~F~+l - riBmFk) = 0. (22) 

If, on the other hand, E is centered at k and Fat k + + , the appropriate difference 
equation can be obtained from Eq. (22) simply by substituting k -+ k - $ every- 
where. 

For the system of Eqs. (18-21), we obtain: 

c-l$~O,k+l/Z + c1 + 2f%r:$a - r,'+2B)-1[r&plsk+l - r,%,kl 

+ uk+1/2P0.k+112 = s0.k+l12 9 

c-l $ (pO.k+112 - p2.k+1/2) + i c1 + 4/%ri$:’ - r,‘i4B>-’ 

x [r.%h,k+l - P3.k+l) - I?? (P1.k - P3.k)l 

+ ak+l/2 pO.k+l/Z - PZ,k+1/2) = sO~k+l/2 - sZ,k+,,Z 3 t 

c-l & h.k + p3.k) + ‘3 @k+liZ - rk-l 12)-1[(p0. k+l 12 + 5P2, k+l/2) 

- @O.k-l/2 + 5~2,k-,/Z)l + ok@l.k + Y3.kf3.k) = ‘%k + yS.ks3.k 9 

c-l $ p3.k + c1 - 2fi)[ri;$2 - rk1712~21-1[rlc~12P2,k+l12 - -@ rk-l12P2.k-l/2 I 

(23) 

(24) 

(25) 

+ y3,k”kP3,k = y3.ks3.k * (26) 

(Precise definitions of ok , a,+,/, , &,k, &&r/2 and y3.k are not needed for the 
purposes of this discussion.) 

If, now, these equations are rearranged to yield difference expressions similar 
to our original Eqs. (5-7) for n = 2, the resultant formulas are considerably 
different in detail from any one would be inclined to write “naturally.” One of 
the advantages of the conservation equation approach is that it greatly limits 
the variety of space differencing schemes one must consider. 

It should also be mentioned that boundary conditions are especially easy to 
deal with in this representation. The most natural conditions are specification of 
all the pI initially, together with the appropriate fluxes of the conserved quantities 
for later times at the boundaries rkmin and rkmaX . (This is similar to Marshak [9] 
boundary conditions in that the p, of odd order are specified on the outer bound- 
aries of the system. For example, Eqs. (23-26) would require specification of p1 
and (pl - p3) at k = kmin and k = kmax.) 
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Other conservative differencing schemes are of course possible; for example, 
we could have chosen to center all the p1 at k. Then Eq. (22) would be replaced by: 

This “leapfrog” differencing scheme, however, has a space differencing error 
equivalent to that of the “staggered” scheme given earlier, used with double the 
mesh spacing. It is therefore less accurate; in fact, for equivalent mesh spacings 
the formal error estimate is four times as great, since for plane symmetry the 
differencing error is of order (dr)2. 

V. TIME DIFFERENCING 

The space-differenced equations for the pz can be written in a very compact 
symbolic form if we define 

where now the S21,k+1,2 and S,,-,,, are taken to include only the “true” sources, 
and not the effective sources due to scattering. Then, where Mm,k ; m = -1, 0, 1 
are three 2n x 2n matrices which contain all the coefficients of the pz in the space- 
differenced equations, including those due to scattering extracted from the S, , 
we have 

C-lPk.t + i Mn.kPk+m = Sk - (28) 
m=-1 

Next we write a time-differenced equation corresponding to Eq. (28): 

(CAt n+l/2)-1(,;+1 _ 
(29) 

WC=-1 

where 

and normally 

pm = pz(t”), etc., Atn+l/2 E tn+l - tn 
3 

0 < 80 < 1; 81 = 1 - 80. 
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Quantities “centered” at tn+1/2, such as Sjcn+r”, are to be evaluated in some reason- 
able manner. They must, however, be treated as constants throughout the time 
interval In < t < P+l. 

Equation (29) can now be solved by the tridiagonal algorithm [lo, 111, except 
that here the coefficients appearing in the algorithm are 2n x 2n matrices, and 
must be treated accordingly. For small values of n the matrices are not difficult 
to evaluate, especially since they tend to be sparse. 

The obvious choices for 80 and 0l in Eq. (29) are 

{@ = 0; 81 = l} and {el = 80 = ;>. 

Unfortunately, the first of these schemes introduces unphysical damping effects, 
as is often the case in “pure implicit” systems, while the second choice does not 
damp short wavelengths for large values of the diffusion parameter [aAt/(Ar)2]. 
Again, this is common in the case of such “Crank-Nicholson” systems. 

A scheme which is no more difficult in principle to use than is the “Crank- 
Nicholson” but which has much better damping properties may be characterized 
in the following manner. Various difference approximations to the differential 
equation ft + Hf = 0, where H is a time-independent operator, may be obtained 
by making rational approximations to the exponential in the exact solution: 

fn+l = exp(-x) f"; where x 3 HAtn+llz. 

For example, the approximation similar to that given in Eq. (29) would be 

exp(-x) = (1 + @x)-l(1 - 19%). 

The operator we shall consider is of the form 

exp(-x) w  [I + (1 - 4 -J/z)x]-l[l - (42 - l)x][l + (1 - i 1/2)x]-l. (30) 

It can be shown that this operator approximates exp(-x) correctly through 
terms of order x2, as does the Crank-Nicholson operator. Furthermore, in the 
diffusion limit, where x yields a large positive eigenvalue, this approximation 
approaches zero from below and has good damping properties everywhere, 
whereas the Crank-Nicholson operator does not. 

The calculational procedure, then, is to hold MzTij2 and Si+1’2 fixed while 
solving Eq. (29) with 

(At”+li2 ---f (1 - + 2/Z) Atn+ll2; 6” + 0; 01 -+ l}. 

Next, still holding Mzi’2 and Szn+1’2 at the same values, and operating upon the 
result of the calculation just completed, solve Eq. (29) again with: 

{At 7412 -+ + 42 dtw2; 80 -+ 2 - 42; 81 -+ 2/2 - 11. 
Experimentally, this technique has behaved as expected; it appears to have 
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none of the damping error behavior associated with the Crank-Nicholson operator. 
The latter operator should be quite acceptable for many purposes, however, and 
is somewhat less complicated and time-consuming than that given in Eq. (30). 

In the case of plane symmetry and constant coefficients, it is possible to demon- 
strate that this method is unconditionally stable, and no instabilities have been 
observed in experiments with systems of equations of order 2n = 4. Further 
numerical experiments are in progress to investigate the accuracy of this technique 
in comparison with other methods of equivalent computational complexity. It is 
suggested that the extent to which the conservation rules derived above are satisfied 
by other difference methods for the Legendre polynomial Eqs. (5-7) could constitute 
a check on the overall accuracy of such schemes; such checks are also quite useful 
in program debugging. 
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